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Self-oscillations in ring Toda chains with negative friction
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We study here the different modes of self-oscillations in ring Toda chains with Rayleigh-type negative
friction. Assuming that at small friction the shape of self-oscillations is close to one of the known Toda
solitonlike solutions we use analytical methods in combination with numerical ones for study of the self-
oscillations. We calculate explicitly for a Toda chain consisting ofN elements theN11 different modes of
self-oscillations. Among them two modes correspond to left and right rotations of the chain as a whole with a
constant velocity Each of the otherN21 modes represents a combination of solitonlike oscillations and a
rotation with a velocity depending on the mode number. Only for the mode corresponding to antiphase
oscillations of the chain neighboring elements~such oscillations are possible for an evenN) the constant
component of the velocity is equal to zero.
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I. INTRODUCTION

Chains of homogeneous oscillatory elements with ex
nential interaction between them were first studied by To
@1–3#. Later it was found that Toda’s equations are gene
tive for many physical problems, for example, for the pro
lem of self-synchronization of modes in lasers@4#.

Since Toda chains are completely integrable systems@5#,
stationary ‘‘waves’’ akin to solitons in continuous media a
possible in these chains. A partial solution of Toda’s eq
tions that describes such ‘‘solitons’’ were found in Ref.@2#.
In practice, however, numerical tests show instability
these solutions with respect to small perturbations, in p
ticular, to numerical or real noise. This is associated with
fact that even a very small deviation of a Hamiltonian syst
from integrable one can cause its stochastic behavior@6#.

Waves similar to solitons are also possible in slightly d
sipative systems with energy sources, in particular, in s
oscillatory ones. Solitonlike waves in self-oscillatory sy
tems received the name autosolitons@20,7# or dissipative
solitons@21,8#. In the last few years extensive literature o
autosolitons appeared, including theoretical@7,8# and experi-
mental works@9#. It is interesting that the presence of diss
pation may stabilize solitonlike waves.

Autosolitons in dissipative ring Toda chains were cons
ered in Refs.@10,11#. Different types of dissipative function
were studied@10,12#. One of the main results of these inve
tigations lies in the fact that dissipation acts in a very spec
way on the stability of solitonlike waves. Sometimes dis
pation destroys these waves, sometimes it stabilizes t
@8#. Electrical circuit implementations of Toda-like solito
systems were studied by Singer and Oppenheim@16# and by
Makarov, del Rioet al. @17#.

The aim of this paper is to calculate explicitly the diffe
ent modes of self-oscillations in ring Toda chains using a
lytical methods in combination with numerical ones. W
show that the chains consisting fromN elements possessN
11 different modes of self-oscillations which may be rep
sented by elliptic functions. Among them are two mod
1063-651X/2001/63~4!/046601~8!/$20.00 63 0466
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which correspond to left and right rotations with a consta
velocity andN21 oscillatory modes.

II. MODELS OF SELF-OSCILLATORY TODA CHAINS

Let us consider a chain consisting ofN balls of massm
connected by nonlinear springs and closed in a ring. T
distance between the neighboring balls

zj5xj2xj 21 ~1!

determines the strain of thej th spring ~see Ref.@13#!. In
moderately general form equations of the chain conside
having regard to small dissipative terms can be written a

mẍj2 f ~zj !1 f ~zj 11!5mm(
i 51

N

gji ~x,ẋ!ẋi ~ j 51,2 . . . ,N!,

~2!

where

f ~z!52a~12e2gz! ~3!

is the nonlinear function describing the elasticity of t
springs,x and ẋ denote the sets of the variablesxk and ẋk ,
respectively,gji (x,ẋ) are nonlinear functions involving posi
tive constant constituentsaji . Without the loss of generality
the factor g may be put equal to unity. The function
gji (x,ẋ) play the role of nonlinear friction factors. The term
maji ẋi describe linear negative friction resulting in the exc
tation of self-oscillations. For sufficiently small oscillatio
amplitudes each ofgji can be expanded in a Taylor serie
Taking into account that terms of the expansion with ev
powers are of prime importance for the amplitude limitatio
we may retain in the expansion only quadratic terms.

Subtracting pairwise Eqs.~2! we can rewrite them in the
strain coordinateszj as
©2001 The American Physical Society01-1
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mz̈j1 f ~zj 21!22 f ~zj !1 f ~zj 11!

5mm(
i 51

N

hji ~z,ż!żi ~ j 51,2, . . . ,N!. ~4!

In the simplest case the functionsgji (x,ẋ) and hji (z,ż) de-
pend only on the indexj, i.e., ( i 51

N gji (x,ẋ) ẋi5gj (xj ,ẋ j ) ẋ j

and( i 51
N hji (z,ż) żi5hj (zj ,żj ) żj . We will assume that in the

vicinity of the boundary of self-excitation where the amp
tudes are small, the functionsgj andhj may be approximated
by quadratic forms similar to that used in the classical R
leigh equation@13#, namely,

gj5a2 ẋ j
2 , ~5!

hj5b2 żj
2 . ~6!

Since the chain is closed in a ring, the conditions

xj 1N5xj , ẋ j 1N5 ẋ j ~7!

must be fulfilled for anyj.

III. SOLITONLIKE OSCILLATIONS
OF THE CONSERVATIVE TODA CHAIN

Solitonlike oscillations in the chain described by Eq.~2!
for m50 were found by Toda@2#. Toda used the change o
variables

ẏ j5 f ~zj !. ~8!

With this change of variables Eqs.~2! for m50 become

mẋj2yj1yj 115mC, ~9!

whereC is an arbitrary constant. Eliminating from Eqs.~1!,
~8!, and~9!, in view of Eq. ~3!, the variablesxj andzj , we
find the following equations foryj :

ÿ j5
a1 ẏ j

m
~yj 2122yj1yj 11!. ~10!

A partial solution of Eq.~10! can be sought in the form of
‘‘running wave’’

yj~ t !5w~j j !, ~11!

wherej j5vt2b j , w is a periodic function with period 2p,
andb is the phase shift between oscillations of neighbor
elements. Substituting Eq.~11! into Eq. ~10! we obtain the
following equation for the functionw(j j ):

mv2w95~a1vw8!@w~j j2b!22w~j j !1w~j j1b!#,
~12!

where the prime indicates differentiation with respect toj j .
Toda showed that a solution of Eq.~12! can be expresse

in terms of the Jacobi elliptic zeta function@18# as
04660
-

g

w~j j !5A znS K ~k!

p
j j ,kD , ~13!

where

zn~q,k!5E
0

q

@dn~x,k!#2dx2
E~k!

K ~k!
q

is the Jacobi elliptic zeta function, andK (k) and E(k) are
the full elliptic integrals of the first kind and of the secon
kind, respectively. Substituting~13! into Eq.~12! we find the
following equations relating the amplitudeA, the modulus of
the elliptic functionk, the frequencyv and the phase shiftb:

A5
mvK ~k!

p
, ~14!

v5
pv0

2K ~k! F12S 12
E~k!

K ~k! D sn2S K ~k!

p
b,kD G21/2

3snS K ~k!

p
b,kD , ~15!

where v052Aa/m. It is easy to verify that Eq.~15! for
small k reduces to the dispersion equation for the cor
sponding linear chain.

It follows from Eqs.~9! and ~13! that the velocity of the
j th ball is

ẋ j~j j !5F~j j ,k,v!1C, ~16!

where

F~j j ,k,v!5
A

m FznS K ~k!

p
j j ,kD2znS K ~k!

p
~j j2b!,kD G .

~17!

It is easily seen thatẋ j (t) is a periodic function ofj j with
period 2p.

The strain of thej th spring can be found from Eq.~11!
and the expression~13!. As a result we obtain the following
equation:

a~12e2zj !5
Av

p FE~k!2K ~k!dn2S K ~k!

p
j,kD G . ~18!

Taking account of Eq.~14!, we find from Eq.~18!:

zj~j j !52 lnH 12
4v2K2~k!

v0
2p2 F E~k!

K ~k!
2dn2S K ~k!

p
j j ,kD G J .

~19!

It is evident thatzj is also a periodic function ofj j with
period 2p.

We note that E(k)→1, K (k)→ ln(4/A12k2), dnq
→1/coshq, and znq→tanhq2q/K (k) ask→1. From this
it follows that, fork→1,
1-2
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ẋ j~j j !'
v0AK ~k!

2 F (
n52`

`

tanhS K ~k!

p
~j j12np! D

2tanhS K ~k!

p
~j j12np2b! D2

b

pG1C. ~20!

The formula~20! allows us to calculate analyticallyxj (j j )
for k close to 1. Integrating Eq.~20! over t we find

xj~j j !' (
n52`

`

lnFcoshS K ~k!

p
~j j12np! D

3cosh21S K ~k!

p
~j j12np2b! D G

2
bK ~k!

p2
j j2x01Ct, ~21!

where

x05
1

2pE0

2p

(
n52`

`

lnFcoshS K ~k!

p
~j j12np! D

3cosh21S K ~k!

p
~j j12np2b! D G2

bK ~k!

p2
j jdj j .

From the conditions~7! we find possible values ofb:

b5bn5
2pn

N
, n50, . . . ,N. ~22!

Thus, the conservative chain fromN elements possessesN
11 different modes of oscillations. These modes differ fro
one another in shape, amplitude, frequency and phase
between the oscillations of neighboring balls. It should
noted that the valuesn50 andn5N correspond to the so
lution ẋ j5C which responds to uniform rotation of the cha
as a whole; the valuesn51 andn5N21 correspond to a
single traveling soliton on the background of uniform ro
tion, the valuesn52 andn5N22 correspond to two trav
eling solitons, and so on. In the active chain described
Eqs.~2! the found modes each may generate the corresp
ing attractor. Examples of the dependencies ofẋ j , xj , andzj
on j5vt2b j are given in Fig. 1 fork5121027 and two
values ofb. It can be seen that, asb increases, ‘‘light’’
solitons are interchanged by ‘‘dark’’ ones.

IV. APPROXIMATE CALCULATION
OF SELF-OSCILLATIONS

First we consider Eqs.~2! and set dissipative forces in th
form ~5! ~such dissipative forces are equivalent to conside
in Refs.@11,17#!. In the case of small dissipation (m!1) the
solution~16! can be regarded as a generative one. This s
tion involves two arbitrary constantsk andC. k is the modu-
lus of the elliptic functions, which determines the amplitu
and the shape of self-oscillations for the correspond
04660
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mode, andC is the constant constituent of the ball velocit
To calculatek andC, we require that the energy and mome
tum conservation laws should be fulfilled in the average
the oscillation period. To suit the first requirement, we ca
for eachj, multiply the j th equation from Eq.~2! by ẋ j , then
add all equations and average over time. As a result we
tain

d

dt (j 51

N E
0

2pS ẋ j
2

2
1

1

m
f ~zj ! D dj j5m(

j 51

N E
0

2p

~a2 ẋ j
2!ẋ j

2dj j .

~23!

For calculating the integrals we should substitute Eq.~16!, in
view of Eq. ~17!, and

f ~zj !5
Av

p FK ~k!dn2S K ~k!

p
j j ,kD2E~k!G

into Eq. ~23! and assumek andC to be constant. It is easily
shown that all summands in Eq.~23! are identical. Eq.~23! is
one of the truncated equations fork andC.

Another truncated equation fork andC we find from the
averaged momentum conservation law. Adding Eqs.~2!, tak-
ing into account that, as follows from the momentum co
servation law for the conservative chain( j 51

N @ f (zj 11)
2 f (zj )#50 and( j 51

N ]F(j j ,k)/]j j50, and averaging ove
time we obtain

(
j 51

N S ]F̄

]k

dk

dt
1

dC

dt
D 5

m

2p (
j 51

N E
0

2p

~a2 ẋ j
2!ẋ jdj j , ~24!

where

F̄5
1

2p E
0

2p

F~j j ,k,v!dj j . ~25!

Similar to Eq.~23!, in Eq. ~24! all summands are also iden
tical.

FIG. 1. Examples of the dependencies ofẋ j , xj , andzj on j j

5vt2b j for k5121027, ~a! b5p/4 ~‘‘light’’ solitons ! and ~b!
b57p/4 ~‘‘dark’’ solitons!.
1-3
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Since the calculation of the left-hand sides of Eqs.~23!
and~24! are rather complicated, we restrict ourselves to c
culations of only steady-state values ofk andC for the dif-
ferent modes of oscillations. Equations for these values
be found by equating the right-hand sides of Eqs.~23! and
~24! to zero, i.e.,

E
0

2p

~a2 ẋ j
2!ẋ j

2dj j50, ~26!

E
0

2p

~a2 ẋ j
2!ẋ jdj j50. ~27!

Substituting Eqs.~16!,~17! into Eq.~27! we obtain a cubic
equation forC which can be written as

C313pC12q50, ~28!

wherep5r 22a/3, q5r 3/2, and

r n5
An

2pmnE
0

2pFznS K ~k!

p
j j ,kD

2znS K ~k!

p
~j j2b!,kD Gn

dj j . ~29!

According to Cardano’s formula a real root of Eq.~28! is

C5~Aq21p32q!1/32~Aq21p31q!1/3. ~30!

Taking account of Eqs.~29! and~28! we can rewrite Eq.~26!
as

ar22r 423r 3C23r 2C250. ~31!

By substituting Eqs.~29! and ~30! into Eq. ~31! we find an
equation fork which can be solved by means of graphic
displays. The results of the calculations forN58 are illus-
trated in Fig. 2, where the dependencies of the steady-s
values ofk, of the constant constituent of velocityC, and of
the frequenciesv are shown for two values ofa andv0. We
see that the values ofk and uCu decrease monotonically asn
increases from 1 to 4~or decreases from 7 to 4!. The values
of C andk found nearly coincide with those calculated fro
the results of direct computation of the initial equations~2!
for N58.

The dependencies ofx̃ j[xj2Ct and ẋ j on j̃ j[(j j
2b/2)/(2p) for all possible oscillation modes are repr
sented in Fig. 3 forN58, a51, andv051. Oscillations of
the velocities of balls are close in their shape either to a li
autosoliton~for n<3) or to a dark one~for n>5). We see
that the oscillations corresponding to the modes withn close
to unity and n close to N have large amplitudes and a
essentially nonharmonic, whereas the oscillations co
sponding to the modes withn close toN/2 have moderately
small amplitudes and are nearly harmonic. The qualita
explanation of these results can be given as follows. Fon
close to unity andn close toN, when the number of traveling
solitons is small, each of them gets a moderately la
amount of energy from the source. Owing to this fact each
04660
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the excited solitons has a large amplitude. Contrary, fon
close toN/2, when the number of traveling solitons is larg
each of the solitons gets only a small amount of energy fr
the source and therefore has a small amplitude. Fora51 the
oscillation frequency first increases, asn increases from 1 to
4, and then decreases asn increases from 4 to 7@see Fig.
2~g!#, whereas fora50.1 the frequency has two minima fo
n53 andn55 @see Fig. 2~h!#.

Numerical simulation of Eqs.~2! for N58 shows that all
of the modes indicated can be excited by means of the va
tion of initial conditions. As an example, we give a table
initial values ofẋ j such that different modes are excited, f
xj (0)50,v051,m50.1,a51 ~see Table I!.

Consider now Eqs.~4! and set dissipative forces in th
form ~6!. For m50 a partial solution of Eqs.~4! describing
solitonlike oscillations is determined by Eq.~19!. As in pre-
ceding case, a chain fromN elements described by Eqs.~4!
possessesN11 different modes of self-oscillations. Thes
modes differ from one another by amplitudes, frequenc
and phase shifts between the oscillations of strains of ne
boring springs. It should be noted that two of these mo
( żj56Ab) do not have a physical meaning because th

FIG. 2. The dependencies of the steady-state values of
modulusk and of the constant constituent of velocityC on n for
N58: ~a! and ~b! a51,v051, ~c! and ~d! a50.1,v51, and~e!
and~f! a51,v054; ~g! and~h! the dependencies of the frequenc
v on n for ~g! a51,v051 ~circles! and v054 ~stars!, and ~h! a
50.1,v051.
1-4
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FIG. 3. The dependencies ofx̃ j[xj2Ct and

ẋ j on j̃ j[(j j2b/2)/(2p) for all possible modes
of oscillations of one of the balls in the case
N58,a51,v051.
a
s
pl
correspond unbounded expansion or contraction of the ch
To calculate the modulusk for different modes we can, a
before, use the averaged energy conservation law. Multi

TABLE I. An example of initial values ofẋ j such that different
modes are excited.

Mode
number ẋ1(0) ẋ2(0) ẋ3(0) ẋ4(0) ẋ5(0) ẋ6(0) ẋ7(0) ẋ8(0)

0 21 21 21 21 21 21 21 21
1 1 1 21 21 21 21 21 21
2 1 1 1 21 21 21 21 21
3 1 21 1 21 1 21 21 21
4 1 21 1 21 1 21 1 21
5 21 1 21 1 21 1 1 1
6 21 21 21 1 1 1 1 1
7 21 21 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1
04660
in.

y-

ing, for eachj, the j th equation from Eq.~4! by żj , adding
all equations and averaging over time we obtain

d

dt (j 51

N E
0

2pS żj
2

2
1

1

m
$2 f ~zj !1zj@ f ~zj 21!1 f ~zj 11!#% D dj j

5m(
j 51

N E
0

2p

~b2 żj
2!żj

2dj j , ~32!

where

żj~j j ,k!5
8v3k2K3~k!

p3v0
2 H 12

4v2K2~k!

p2v0
2 F E~k!

K ~k!

2dn2S K ~k!

p
j j ,kD G J 21

snS K ~k!

p
j j ,kD

3cnS K ~k!

p
j j ,kDdnS K ~k!

p
j j ,kD , ~33!
1-5
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In the steady-state regime the value ofk is determined from
the equation

E
0

2p

~b2 żj
2!żj

2dj j50. ~34!

For every value ofk the integrals in Eq.~34! were calculated
by us numerically and this equation was solved by mean
graphical displays. The results of the calculations are ill
trated in Fig. 4, where the dependencies of the steady s

FIG. 4. The dependencies of the steady-state values ofk ~stars!,
A0 ~circles! andv/v0 on n for N58, ~a!,~c! a50.1 and~b!,~d! a
50.5.
04660
of
-
te

values ofk ~stars!, of the oscillation amplitudesA05zmax
2zmin ~circles!, and of the relative frequenciesv/v0 are
shown.

The first four oscillation modes for all springs are repr
sented in Figs. 5 and 6 forN58. We see that the oscillation
corresponding to the first~and the seventh! mode, which
have the largest amplitude, are essentially nonharmo
whereas the oscillations corresponding to the other mo
are close to harmonic in their shape. The oscillation f
quency first increases, asn increases from 1 to 4, and the
decreases asn increases from 4 to 8.

Figure 7 illustrates the projections of limit cycles for di
ferent modes (n51,2,3,4) on the planeszj , żj ~a!, andzj ,
zj 11 for a50.1. It is seen that these projections depend
sentially on the mode number.

V. DISCUSSION OF APPLICATIONS AND
GENERALIZATIONS OF THE DISSIPATIVE FORCES

The oscillatory modes analyzed here are not only theo
ical constructions but they have been observed and stu
already numerically and also experimentally by means
analog implementation consisting ofN<6 electrical circuits
@17#. The implementation of Toda systems used in the ci
work was based on diode double capacitor circuits wh
were proposed by Singer and Oppenheim@16#. In compari-
son to Singer and Oppenheim additional blocks were in
duced modeling the dissipative energy sources. In fact it w
shown in the cited experimental work@15–17# that the elec-
trical implementation of exponential nonlinearities of To
type is not a difficult task. Indeed the natural nonlinearity
diodes is of exponential type and active elements one find
many electrical circuits. This, in fact gave us the motivati
to go into deeper details of the theoretical analysis of ac
s
s

FIG. 5. The oscillations of all spring strain
corresponding to the first four oscillation mode
for a50.1.
1-6
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FIG. 6. The oscillations of all spring strain
corresponding to the first four oscillation mode
for a50.5.
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Toda systems and to look for explicit solutions. We belie
that these systems might be even the prototypes for prac
applications of nonlinear excitations.

We have shown above that exponential nonlinearities m
quite easily be implemented by diodes, however, the imp
04660
e
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mentation of the dissipative nonlinearities is not as easy
requires some effort@17#. Here we concentrated on dissip
tive nonlinearities of Rayleigh type. Let us discuss now
few possible generalizations of the dissipative forces, co
sponding formally to different dissipative factorsg. We will
e
FIG. 7. The projections of limit cycles on th

planes~a! zj ,żj and ~b! zj ,zj 11 for the first ~the
curves 1!, the second~the curves 2!, the third~the
curves 3!, and the fourth modes~the curves 4!.
1-7
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discuss the following models.
Depot model of friction. Based on a physical model f

the transfer of energy from an internal depot to accelera
of motion the following expression has been derived@12,14#:

g5S g02
g1

11g2ẋ j
2D . ~35!

In the case of small oscillation amplitudes this express
coincides with the Rayleigh friction function considered
the preceding sections. It should be noted that a similar
sipative factor was derived by Monod@19# for the descrip-
tion of the growth of bacteria in nutrient medium.

Friction depending on the total momentum. Another
teresting model is the following:

g5a2 v̄2, ~36!

where

v̄5
1

N (
i

v i ~37!

is the average velocity of the balls.
Friction depending on the full energy. This model for d

sipation factors has been studied in Ref.@10#. The assump-
tion that the friction factor depends only on the full ener
leads to

g5e2
E

N
, ~38!
n

ta

04660
n

n

s-

-

where E5H is the full energy determined by the Hami
tonian of the Toda chain. Such setting of the dissipation f
tor is similar to that in the Bautin equation@13#.

The specific interest in the last two models of dissipat
defined by Eqs.~36!,~38! is connected with the property tha
these dissipation factorsg depend only on integrals of mo
tion of the generative conservative system. This special pr
erty guarantees that any solution for the conservative c
m50 may be transferred to the dissipative case by adjus
the parametersa and e to the particular value of the corre
sponding integral. Then the dissipative terms have ma
the function to drive the system to the special value of
corresponding integral~which plays now the role of a char
acteristics of the attractor! and after certain relaxation tim
the system remains on the invariant set. It is evident tha
the case of small dissipation the methods considered in
previous section are applicable for the calculation of the
cillation amplitudes and frequencies for all dissipative fa
tors considered above.

VI. CONCLUSION

We have shown that by using the averaged energy
momentum conservation laws the shape of self-oscillati
and the values of the steady-state amplitudes and frequen
can be calculated. It is important that the generative solit
like solutions, which can hardly be observed in the cons
vative chain~even in its numerical simulations! reveal them-
selves as small dissipation is present.
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