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Self-oscillations in ring Toda chains with negative friction
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We study here the different modes of self-oscillations in ring Toda chains with Rayleigh-type negative
friction. Assuming that at small friction the shape of self-oscillations is close to one of the known Toda
solitonlike solutions we use analytical methods in combination with numerical ones for study of the self-
oscillations. We calculate explicitly for a Toda chain consistingNoélements theN+1 different modes of
self-oscillations. Among them two modes correspond to left and right rotations of the chain as a whole with a
constant velocity Each of the oth&—1 modes represents a combination of solitonlike oscillations and a
rotation with a velocity depending on the mode number. Only for the mode corresponding to antiphase
oscillations of the chain neighboring elemeltssich oscillations are possible for an evidh the constant
component of the velocity is equal to zero.
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[. INTRODUCTION which correspond to left and right rotations with a constant
velocity andN— 1 oscillatory modes.

Chains of homogeneous oscillatory elements with expo-
nential interaction between them were first studied by Toda
[1-3]. Later it was found that Toda's equations are genera-
tive for many physical problems, for example, for the prob- Let us consider a chain consisting Nfballs of massm
lem of self-synchronization of modes in lasé#g. connected by nonlinear springs and closed in a ring. The

Since Toda chains are completely integrable systghs distance between the neighboring balls
stationary “waves” akin to solitons in continuous media are
possible in these chains. A partial solution of Toda's equa- Zj=Xj—Xj_1 D
tions that describes such “solitons” were found in RieH].

In practice, however, numerical tests show instability ofgetermines the strain of thgh spring (see Ref.[13]). In
these solutions with respect to small perturbations, in parmoderately general form equations of the chain considered
ticular, to numerical or real noise. This is associated with thehaving regard to small dissipative terms can be written as
fact that even a very small deviation of a Hamiltonian system

from integrable one can cause its stochastic behd®ipr N

_ nges similar to_solitons are also pogsible ip slight.ly dis-m'g(j —f(z)+ f(zHl):mﬂE gji(x,;();(i (j=1,2...N),
sipative systems with energy sources, in particular, in self- =1
oscillatory ones. Solitonlike waves in self-oscillatory sys- @
tems received the name autosolitgr,7] or dissipative
solitons[21,8]. In the last few years extensive literature on Where
autosolitons appeared, including theoret{@a8] and experi-
mental workg9]. It is interesting that the presence of dissi- f(z)=—a(l—e 7 (3)
pation may stabilize solitonlike waves.

Autosolitons in dissipative ring Toda chains were consid-is the nonlinear function describing the elasticity of the
ered in Refs[lO,lJ]. Different types_of dissipative func.t|ons springs,x andx denote the sets of the variablis andx,,
were studied10,12. One of the main results of these inves- ivel : i functi VoIV .
tigations lies in the fact that dissipation acts in a very speciﬁcr.eSpeC ve ygji(x,x)_ are noniinear functions Invoiing posi-

tive constant constituents; . Without the loss of generality

way on the stability of solitonlike waves. Sometimes dissi- fact b ¢ |t itV The funcii
pation destroys these waves, sometimes it stabilizes theme actory may be put equal 1o unily. The tunctions

[8]. Electrical circuit implementations of Toda-like soliton ji(X,X) play the role of nonlinear friction factors. The terms
systems were studied by Singer and OppenHdiéhand by  ua;ix; describe linear negative friction resulting in the exci-
Makarov, del Rioet al.[17]. tation of self-oscillations. For sufficiently small oscillation
The aim of this paper is to calculate explicitly the differ- amplitudes each ofj;; can be expanded in a Taylor series.
ent modes of self-oscillations in ring Toda chains using anaTaking into account that terms of the expansion with even
lytical methods in combination with numerical ones. We powers are of prime importance for the amplitude limitation,
show that the chains consisting frahelements possed$é  we may retain in the expansion only quadratic terms.
+ 1 different modes of self-oscillations which may be repre- Subtracting pairwise Eq$2) we can rewrite them in the
sented by elliptic functions. Among them are two modesstrain coordinateg; as

II. MODELS OF SELF-OSCILLATORY TODA CHAINS
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mz+f(z;_1) —2f(z) +f(zj+1)
N
:mﬂzgh“u:ﬁi (i=12,...N). (4

W

@(f]):Azn(Tfj K
where

In the simplest case the functiogg (x,x) andh;;(z,2) de- 2009 k)= Jﬁ[dn(xyk)]zdx_ ik)ﬂ
pend only on the indey, i.e., 2{L;0;i (X, X)X = gj(Xj ,X})X; 0 K (k)
and=Lh;i(z,2)z=h;(z; ,z))z; . We will assume that in the
vicinity of the boundary of self-excitation where the ampli-
tudes are small, the functiogs andh; may be approximated
by quadratic forms similar to that used in the classical Ray
leigh equatior[13], namely,

is the Jacobi elliptic zeta function, ard(k) and E(k) are
the full elliptic integrals of the first kind and of the second
kind, respectively. Substitutindg.3) into Eq.(12) we find the
following equations relating the amplitude the modulus of
the elliptic functionk, the frequencys and the phase shif§:

_ 2
gj=a-xj, ) MoK (k)
A=——, (14)
_ 52
hj=b—-2z. (6)
~1
Since the chain is closed in a ring, the conditions o @0 | [ B0} SKK) Bk 12
) . 2K (k) K (k) a 7
Xj4n=Xjs  XjenTX (7 K(K)
must be fulfilled for anyj. xS T 'B'k)’ (19
I1l. SOLITONLIKE OSCILLATIONS where wy=2a/m. It is easy to verify that Eq(15) for
OF THE CONSERVATIVE TODA CHAIN small k reduces to the dispersion equation for the corre-
L _ . ) ] sponding linear chain.
Solitonlike oscillations in the chain described by Eg) It follows from Egs.(9) and (13) that the velocity of the
for u=0 were found by Tod#2]. Toda used the change of jth ball is
variables
- Xj(§)=F (& k,®)+C, (16)
yi=f(z). tS) e .
where

With this change of variables Eg&) for =0 become

. A K (k) K(k)
mx —Yj+Yyj+1=mC, 9) F(g,-,k,w)za zn(Tfj,k)—zn(T(gj—ﬂ),k) .

whereC is an arbitrary constant. Eliminating from Ed4), 17
(8), and(9), in view of Eq.(3), the variablesq; andz;, we

find the following equations foy,: It is easily seen tha'xj(t) is a periodic function of; with

period 2.
. a+ty The strain of thejth spring can be found from Eqll)
yj=T'(yj,l—2yj+yj+l). (10 and the expressiofl3). As a result we obtain the following
equation:
A partial solution of Eq(10) can be sought in the form of a Aw K (k)
“running wave” a(l—e %)= 7{E(k)— K(k)dﬁ(Tg,kH. (18

yi()=¢(§)), (11

where¢; = wt— Bj, ¢ is a periodic function with period 2,
and g is the phase shift between oscillations of neighboring 4w?K2(K)
elements. Substituting Eq11) into Eq. (10) we obtain the  Zj(&j)= —In[ 1-——
following equation for the functiorp(&;): WoT

2 nm_ + ! L _2 )+ L+ ,
moZe"=(atweile(&— )= 20(&)+ (4 B)](lz) It is evident thatz; is also a periodic function of; with

Taking account of Eq(14), we find from Eq.(18):

E(k) K (k)
K(k)‘d”2< w gj’km'

(19

period 2.
where the prime indicates differentiation with respecgto We note that E(k)—1, K(k)ﬂln(4/\/1—k2), dn?d
Toda showed that a solution of E@.2) can be expressed — 1/coshd, and znd— tanhd—J/K(k) ask—1. From this
in terms of the Jacobi elliptic zeta functipa8] as it follows that, fork—1,
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woVK (k) K(k) " a i
X(§)~——5— 2 tant| —— (¢ +2n) 1 .
( ) RZ: ) “I§
.4 Q.2
—ta nl—(—(§J+2nw ,8))—5 +C. (20 - Eé
S N J
The formula(20) allows us to calculate analyticalby;(;) T wem AR T
for k close to 1. Integrating Eq20) overt we find 02_\ 3 N f_ p o
- K(K) o g /\
Xj( &)=~ E In| cos (—(§j+2nw)) ® w2
= m w 3
K(k ! ﬁg
xcoshl((T)(nganw—,B)” o 12
) owem o £/(2m) '
BK(k) o
- —2§j —XotCt, (22 FIG. 1. Examples of the dependenciesxpf x;, andz; on §;
™ =wt—Bj for k=1-10"7, (@ B=n/4 (“light” solitons) and (b)

B=T7wl4 (“dark” solitons).
where

>
2 n=—ow

mode, andC is the constant constituent of the ball velocity.

To calculatek andC, we require that the energy and momen-
tum conservation laws should be fulfilled in the average for
the oscillation period. To suit the first requirement, we can,

K (k)
cosr(T(§j+2nw))

K(k) BK(K) for eachj, multiply thejth equation from Eq(2) by x; , then
—1 7 . _ _ T . L] ]
X cosh ( T (§+2nm '8)) §;dg; - add all equations and average over time. As a result we ob-
tain

From the conditiong7) we find possible values g8: N

d 2 X
2mn agl fo
ﬁ:Bn:T’ n:O,,N (22) .

2
f(zJ )olgJ MZJ (a—x2)x°dg; .
(23

Thus, the conservative chain from elements possessés  For calculating the integrals we should substitute @6), in

+1 different modes of oscillations. These modes differ fromview of Eq. (17), and

one another in shape, amplitude, frequency and phase shift

between the oscillations of neighboring balls. It should be f(z,)= A_‘*’ K(k)dnz(&k)f- k) —E(k)}
— — j i

noted that the values=0 andn=N correspond to the so- T

lution xJ C which responds to uniform rotation of the chain .

as a whole; the values=1 andn=N-—1 correspond to a

single traveling soliton on the background of uniform rota-

tion, the valuesn=2 andn=N-—2 correspond to two trav- on'eo\ofttr?e ttruncattec(ij equatgpnsflc;angg. find f th
eling solitons, and so on. In the active chain described by nother truncated equation ferandt we find from the

Egs.(2) the found modes each may generate the correspon(f?‘ver"’\ged momentum conservation law. Adding E2s.tak-

E | fthe d g ¢ q ing into account that, as follows from the momentum con-
ing attractor. Examples of the depen enuezoxl anaz; servation law for the conservative chamJ 1Lf(zj+1)
on é=wt— Bj are given in Fig. 1 fok=1—10 ' and two

values of 8. It can be seen that, g8 increases, “light” —1(z)]=0 andE -10F(¢j,K)/0¢;=0, and averaging over
i ; « " time we obtain
solitons are interchanged by “dark” ones.

into Eq. (23) and assumé& and C to be constant. It is easily
shown that all summands in E@3) are identical. Eq(23) is

N[ oF dk dC|_ N
IV. APPROXIMATE CALCULATION E wat ) " 2. (a—x7)xdé;, (24)
OF SELF-OSCILLATIONS - Ti=1Jo
First we consider Eq€2) and set dissipative forces in the where
form (5) (such dissipative forces are equivalent to considered
in Refs.[11,17). In the case of small dissipatiop&1) the = i jZWF(g- K,w)d& (25)
solution(16) can be regarded as a generative one. This solu- 27 Jo jrf @8-

tion involves two arbitrary constanksandC. k is the modu-
lus of the elliptic functions, which determines the amplitudeSimilar to Eq.(23), in Eq. (24) all summands are also iden-
and the shape of self-oscillations for the correspondindical.
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Since the calculation of the left-hand sides of E(3) 1

1
) ) a 08 F 16
and(24) are rather complicated, we restrict ourselves to cal-  pgggs F ‘ ] ser . *
culations of only steady-state valueslkoand C for the dif- 0.9098 L . . 1l o Oig N o " 7
ferent modes of oscillations. Equations for these values cal Wr . ]
be found by equating the right-hand sides of E@8) and 08997 - . 7 0EF . .
(29) to zero, i.e., 0.8096 ————L— 4
12 8 4 5 6 7 012346678
2 n n
f (a_ij)ijdgj = 0, (26) 1 T T T T T c 04 T T T T T T d
0 098 F . oz b B
0.86 | . ' .
27 L ® 084 F 4 or s * e
fo (a—x?)x;d&;=0. (27) L . ool e |
08 r 1 .
088 1 1 [ ] 1 1 D4 T IR N N T N |
Substituting Eqs(16),(17) into Eqg.(27) we obtain a cubic 12 3 4 5 6 7 012345678
equation forC which can be written as n n
1 T T T T T 1 T T T T T T T
3 _ 098 |- 4 e o) N ] f
C*+3pC+2g=0, (28) 0%8 - . ] EE - . -
=r,~al3, q= x %55 F 1 o 3F _aec” ]
wherep=r,—al3, q=r/2, and 02 1
0sL o+ = ] SEl 7
An 2m K( ) ggg I S L] -0_:18 L o0 ]
fnzmo TS,, 1 2 3 4 6 6 7 012346678
n n
n 1 — % T 07F & T ¢ T ® 4
—Z( ( )( -B), k) dfj (29) * * g 3 . h
ar 08 - nDeF .
3 * o ® g k 3
According to Cardano’s formula a real root of E@8) is o * * A 05 .
4 1 1 1 1 1 ). 1 1 1 1 1
C=( m_ )= ( W’L ' (30 0'41 2 3 4 6 & 7 O'41 2 3 4 65 8 7
Taking account of Eqg29) and(28) we can rewrite Eq(26) 8 i
as FIG. 2. The dependencies of the steady-state values of the
5 modulusk and of the constant constituent of velociB/on n for
ar,—rs—3rzC—3r,C*=0. (B)  N=8:(a) and(b) a=1,wy=1, (c) and(d) a=0.1,w=1, and(e)

o ) ] and(f) a=1,wy=4; (g) and(h) the dependencies of the frequency

By substituting Eqs(29) and (30) into Eq. (31) we find an  , onn for (g) a=1,w,=1 (circles and wo=4 (stars, and(h) a
equation fork which can be solved by means of graphical =0.1,0,=1.
displays. The results of the calculations fdr=8 are illus-
trated in Fig. 2, where the dependencies of the steady-statBe excited solitons has a large amplitude. Contrary,rfor
values ofk, of the constant constituent of velocif and of ~ close toN/2, when the number of traveling solitons is large,
the frequencies» are shown for two values afandw,. We  €ach of the solitons gets only a small amount of energy from
see that the values &fand|C| decrease monotonically as the source and therefore has a small amplitude a=ot the
increases from 1 to for decreases from 7 tog4The values oscillation frequency first increases, mscreases from 1 to
of C andk found nearly coincide with those calculated from 4, and then decreases asncreases from 4 to see Fig.
the results of direct computation of the initial equatid@s  2(9)], whereas foa=0.1 the frequency has two minima for
for N=8. n=3 andn=5 [see Fig. 2h)].

The dependencies oijzx Ct and x, on fl (§ Numerical ;im_ulation of Eq92) fpr N=28 shows that all _
— BI2)/(2m) for all possible oscillation modes are repre- Of the modes indicated can be excited by means of the varia-
sented in Fig. 3 foN=8, a=1, andw,=1. Oscillations of tion of initial conditions. As an example, we give a table of

the velocities of balls are close in their shape either to a lightnitial values ofx; such that different modes are excited, for
autosoliton(for n=<3) or to a dark ondfor n=5). We see Xj(0)=0,0o=1,u=0.1a=1 (see Table)l

that the oscillations corresponding to the modes wittiose Consider now Eqs(4) and set dissipative forces in the
to unity andn close toN have large amplitudes and are form (6). For =0 a partial solution of Eqg4) describing
essentially nonharmonic, whereas the oscillations corresolitonlike oscillations is determined by EAQ.9). As in pre-
sponding to the modes with close toN/2 have moderately ceding case, a chain froil elements described by Eqél)
small amplitudes and are nearly harmonic. The qualitativéossessedl+1 different modes of self-oscillations. These
explanation of these results can be given as follows. iFor modes differ from one another by amplitudes, frequencies
close to unity anah close toN, when the number of traveling and phase shifts between the oscillations of strains of neigh-
solitons is small, each of them gets a moderately largoring springs. It should be noted that two of these modes
amount of energy from the source. Owing to this fact each O(ijz +/b) do not have a physical meaning because they
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correspond unbounded expansion or contraction of the chaifhg, for eachj, the jth equation from Eq(4) by 'ZJ. , adding
To calculate the moduluk for different modes we can, as g equations and averaging over time we obtain
before, use the averaged energy conservation law. Multiply-

52

| Z5 1

51 + E{Zf(zj)"_zj[f(zjfl) + f(2j+1)]}) d¢;

d
TABLE I. An example of initial values of<j such that different &jzl fo
modes are excited.

N
Mode =p2, | (b=Z)Zdg, (32
number X1(0) X5(0) X3(0) x4(0) x5(0) Xg(0) X7(0) xg(0) 0

o -1 -1 -1 -1 -1 -1 -1 -1 Where

1 1 1 -1 -1 -1 -1 -1 -1 _ 8w3k2K3(K) 4w”K2(k) [ E(k)

2 1 1 1 -1 -1 -1 -1 -1 zi(¢;,k) = 2 - 2

2 - L T 1 1 Tow? 2w’ K (k)

4 1 -1 1 -1 1 -1 1 -1 K(K) KK

5 -1 1 -1 1 -1 1 1 1 —dnz(g,- k)H S,.( £ ,k)

6 -1 -1 -1 1 1 1 1 1 m &

7 -1 -1 1 1 1 1 1 1 K(K) K(K)

8 1 1 1 1 1 1 1 1 X cn ng,k)dn(ﬂfj,k>, (33
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T T values qfk (starg, of the oscilla_tion amplitud_e$\0:zmax
b * . " * —Znin (circles, and of the relative frequencies/w, are
r 1 shown.

. The first four oscillation modes for all springs are repre-
1 sented in Figs. 5 and 6 fot=8. We see that the oscillations
* corresponding to the firstand the sevenjhmode, which

W. EBELING, P. S. LANDA, AND V.
1lB T T T T T 2
1% 42 18§
e L]

_0ss - . 16
< 09r T = 14
& 085 1

08 L ] 12
ol % " . 13
07 Lo % 08
1 2 3 45 86 7
n
1 T T v T T c 1
09 . . . 0.9
s 08 . P 08
07 s 07
8 3
06 . 0.6
05 . 05
04— L L 1| 04
1 2 3 4 5 6 7
n

L1 have the largest amplitude, are essentially nonharmonic;
t 23 45867 whereas the oscillations corresponding to the other modes
n are close to harmonic in their shape. The oscillation fre-
T T T |4 guency first increases, asincreases from 1 to 4, and then
- . . 1 decreases asincreases from 4 to 8.
- - Figure 7 illustrates the projections of limit cycles for dif-
-oe * ferent modesrf=1,2,3,4) on the planes, z; (a), andz;,
B T zj, for a=0.1. It is seen that these projections depend es-
A L 1 sentially on the mode number.
1 2 3 4 5 6 7
n V. DISCUSSION OF APPLICATIONS AND

GENERALIZATIONS OF THE DISSIPATIVE FORCES

FIG. 4. The dependencies of the steady-state valueqsitrs,
A, (circles and w/wy on n for N=8, (a),(c) a=0.1 and(b),(d) a The oscillatory modes analyzed here are not only theoret-

=0.5.

ical constructions but they have been observed and studied
already numerically and also experimentally by means an

In the steady-state regime the valuekdé determined from analog implementation consisting <6 electrical circuits

the equation

[17]. The implementation of Toda systems used in the cited
work was based on diode double capacitor circuits which
were proposed by Singer and Oppenh¢itf]. In compari-

son to Singer and Oppenheim additional blocks were intro-

2
f— : 2 : 2 .=
fo (b—2})zjd¢;=0. (34 duced modeling the dissipative energy sources. In fact it was

shown in the cited experimental wofk5—17 that the elec-
trical implementation of exponential nonlinearities of Toda

For every value ok the integrals in Eq(34) were calculated type is not a difficult task. Indeed the natural nonlinearity of
by us numerically and this equation was solved by means adiodes is of exponential type and active elements one finds in
graphical displays. The results of the calculations are illusmany electrical circuits. This, in fact gave us the motivation
trated in Fig. 4, where the dependencies of the steady state go into deeper details of the theoretical analysis of active
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FIG. 6. The oscillations of all spring strains
corresponding to the first four oscillation modes

for a=0.5.

Toda systems and to look for explicit solutions. We believementation of the dissipative nonlinearities is not as easy and
that these systems might be even the prototypes for practicabquires some effoftl7]. Here we concentrated on dissipa-

applications of nonlinear excitations.

z

0.2

0.4

06

06

0.4

02

Zj

Zi+}

tive nonlinearities of Rayleigh type. Let us discuss now a
We have shown above that exponential nonlinearities majew possible generalizations of the dissipative forces, corre-
quite easily be implemented by diodes, however, the implesponding formally to different dissipative factagsWe will

046601-7
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planes(a) z; ,2j and(b) z;,z;., for the first(the
curves }, the secondthe curves P, the third(the
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discuss the following models.

PHYSICAL REVIEW E63 046601

where E=H is the full energy determined by the Hamil-

Depot model of friction. Based on a physical model for tonian of the Toda chain. Such setting of the dissipation fac-
the transfer of energy from an internal depot to accelerationor is similar to that in the Bautin equatigf3].

of motion the following expression has been deri{&g,14:

Y1

— . (35
1+ ’}/ZXJ-Z

9:<7’0_

The specific interest in the last two models of dissipation
defined by Eqs(36),(38) is connected with the property that
these dissipation factorg depend only on integrals of mo-
tion of the generative conservative system. This special prop-
erty guarantees that any solution for the conservative case

In the case of small oscillation amplitudes this expressiory, =0 may be transferred to the dissipative case by adjusting
coincides with the Raylelgh friction function considered in the parameters ande to the particu|ar value of the corre-
the preceding sections. It should be noted that a similar d'SSponding integral. Then the dissipative terms have mainly

sipative factor was derived by Mondd9] for the descrip-
tion of the growth of bacteria in nutrient medium.

Friction depending on the total momentum. Another in-

teresting model is the following:

g=a-v? (36)

where

v= (37)

S

Z| -

is the average velocity of the balls.

Friction depending on the full energy. This model for dis-

sipation factors has been studied in Rdf0]. The assump-

the function to drive the system to the special value of the
corresponding integrdlwhich plays now the role of a char-
acteristics of the attractpand after certain relaxation time
the system remains on the invariant set. It is evident that in
the case of small dissipation the methods considered in the
previous section are applicable for the calculation of the os-
cillation amplitudes and frequencies for all dissipative fac-
tors considered above.

VI. CONCLUSION

We have shown that by using the averaged energy and
momentum conservation laws the shape of self-oscillations

tion that the friction factor depends only on the full energyand the values of the steady-state amplitudes and frequencies

leads to

g=e— < (39

can be calculated. It is important that the generative soliton-
like solutions, which can hardly be observed in the conser-
vative chain(even in its numerical simulationseveal them-
selves as small dissipation is present.
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